Electronic Energy Management System: Battery Management and Generator Control

Electronic Energy Management System: Battery Management and Generator Control

With the development of automotive technology, more and more in-vehicle electronic facilities and entertainment facilities. On the one hand, these electronic systems increase the pressure of the vehicle's energy. Under normal circumstances, in the case of 1kW, the consumption of 0.7-1.2L of gasoline is required for every 100km, and the energy is facing an increasingly shortage situation; On the one hand, the case that the car cannot be started due to the collapse of the electronic system is the main reason for the failure of startup.

At the same time, the number of cars is increasing, and emissions pollution has become one of the most concerned issues in the world. At present, regulations on restricting CO2 emissions have been introduced in Europe. According to regulations, from 2012 to 2015, the CO2 emissions of automobiles must be reduced from 160g/km to 120-125g/km. It is estimated that by 2020, the CO2 emissions of automobiles will not exceed 95g/km. This regulation will require automakers to consider reducing CO2 emissions in future car designs, or face high fines. Therefore, we urgently need to find solutions to reduce CO2 emissions and save energy.

Battery state detection and charge and discharge optimization

Using an electronic energy management system, battery status monitoring algorithms integrated in battery sensors enable timely monitoring of battery status. Correspondingly, the battery and sensor working strategies can be set in the control system of the main control unit, and the working range of the battery can be set. According to the current battery charging state, the battery temperature and the driving condition of the vehicle, the corresponding strategy can be used to control the generator. Charge the battery in time. In this process, the vehicle energy supply is in a completely closed-loop control state, thus ensuring the energy supply of the whole vehicle, optimizing the vehicle energy management, ensuring the minimum current required for the engine to start again, and avoiding the battery collapse. The vehicle cannot start the problem again.

Dynamic control of generator operating voltage

At the same time, the electronic energy management system can also use the controllable alternator to dynamically change the generator's operating voltage setting to optimize engine torque distribution and vehicle energy management.

Conventional generator control does not utilize excess mechanical energy and the operating voltage is not controllable. When the car needs higher torque during the acceleration operation, the traditional generator still consumes a large engine torque, and the electronic energy management system can adjust the torque demand of the generator by dynamically controlling the working voltage of the generator to optimize the car. Torque requirements during operation. When the car is in an accelerating state, the system reduces the operating voltage of the generator, thereby reducing the torque demand of the generator torque, thereby ensuring that more energy is provided to the car to accelerate. Conversely, when the car is in a decelerating state, the generator voltage can be increased so that the system can use the excess mechanical energy during deceleration to charge the battery.

In the case of normal battery charging and discharging, if the sensor detects that the battery is under-charged, the main control unit will increase the generator operating voltage accordingly, improve the charging efficiency of the generator, and perform fast charging. When the battery is in a saturated state, the generator voltage is turned down accordingly, so that the generator is idling to avoid unnecessary overcharging of the battery, thereby reducing the torque consumed. This reduces fuel consumption and keeps the state of charge within a safe level, ensuring that the battery operates in a benign range and extends battery life.

Conclusion

In summary, the electronic energy management system improves the starting performance of the vehicle to a certain extent, ensures the reliable supply of the vehicle power, improves the reliability of the electronic system, reduces fuel consumption and reduces CO2 emissions. The more you apply to the development of new cars.

The Opel car key cover is good grade car key protection series. The material is made of high quality Silicone Car Key Cover. it is super easy for cleaning. the car key cover is durable, you can use it for long time! The color of silicone will not fade. The car key case used for 3D design button,100% suitable for the Opel car key. Easy to install and it is perfect fit for your car keys. The silicone car key covers can provide protection from bumps, dirt, grease, fingerprints and scratches and keep your car remote key like brand new. We also can offer custom logo service. Make silicone car key case appear more perfect. We have different Opel car key cover types Opel 1 for Vauxhall Corsa Agila Meriva Combo. Opel 2 with two buttons for Vauxhall Corsa Astra Vectra Zafira Signu etc for your choose.

Opel Silicone Key Cover

Opel Silicone Key Cover,Opel Silicone Key Fob Cover,Opel Silicone Key Case,Opel Key Cover

Shenzhen Beautiful Earth technology Co.,Ltd , http://www.siliconekeyfobcover.com